ATTACHMENT FIVE TRUEPOSITION'S AUSTIN AND FRISCO, TX TEST REPORT

- Testing in Manhattan
- Indoor Testing Summary
- Comparison testing in Austin and Frisco TX

Manhattan Testing

- Conducted fall of 2000
- Tested TruePosition U-TDOA technology, same technology operating today
- Test conducted on Verizon network in mid town Manhattan by independent Verizon Labs
- Followed methodology equivalent to CSRIC test plan
- Dense urban area similar to dense urban area in San Francisco
- Many story concrete, steel, glass buildings

Manhattan Test Area

Dense Urban Area - Manhattan

PIONEERING LOCATION SOLUTIONS FOR A SAFER WORLD

Confidential and Proprietary

PIONEERING LOCATION SOLUTIONS FOR A SAFER WORLD

Confidential and Proprietary

Sample Dense Urban Buildings - Manhattan

PIONEERING LOCATION SOLUTIONS FOR A SAFER WORLD

Confidential and Proprietary

Similar Test Point Distribution in Buildings

Manhattan

- Tests points selected on ground floor and top floor
- On each floor, 3 test points selected
 - Exterior room (with window)
 - Interior room
 - Building core (near elevator)

San Francisco example – Building 1

- TP1: In lobby bar (deep indoors)
- TP2: 4th floor interior corridor
- TP3: 31st floor, end of corridor, near window
- TP4: 8 floor side corridor, near window

Exterior Room Top Floor U-10

Exterior Room Ground Floor U-12

Interior Room Top Floor U-13

Interior Room Ground Floor U-15

Building Core Top Floor U-16

Building Core Ground Floor U-18

Manhattan Dense Urban Indoor Results

		67%	95%
U10	Exterior room, top floor	92	120
U12	Exterior room, ground floor	84	202
U13	Interior room, top floor	87	125
U15	Interior room, ground floor	67	208
U16	Building Core, top floor	99	129
U18	Building Core, ground floor	120	204
Average	across urban canyon indoor scenarios	92	165

Indoor Testing Summary

Accuracy and Yield Comparison Dense Urban

Based on CSRIC testing in San Francisco, and Verizon testing in Manhattan

	67%	90%	95%	Yield
NextNav	57.1	102.4	154	93.90%
Polaris	116.7	400.1	569.3	99.40%
Qualcomm	155.8	267.5	328.1	85.80%
TruePosition	92	150	165	99%

- NextNav and TruePosition had good accuracy
- Polaris and TruePosition had good yield

- Based on CSRIC testing in San Francisco and TechnoCom testing with CSRIC based plan in Wilmington
- Urban Comparison

	67%	90%	95%	Vield
NextNav	62.8		196.1	95.40%
	198.4		729.9	99.90%
Polaris				
Qualcomm	226.8		507.1	90.80%
TruePosition	87.3	140.7	163.2	100

- NextNav and TruePosition had good accuracy, but NextNav had several failed attempts which were not included in accuracy results
- Polaris and TruePosition had good yield

Accuracy and Yield Comparison Suburban

	67%	90%	95%	Yield
NextNav	28.6	52.9	62.2	100.00%
Polaris	232.1	420.7	571.4	99.80%
Qualcomm	75.1	204.8	295.7	91.40%
TruePosition	66.1	116.2	163	100

- NextNav and TruePosition had good accuracy and yield
- Polaris has very poor accuracy
- Qualcomm fails a significant portion of attempts

AGPS/AFLT or AGPS/RTT is not Sufficient

PSAP Testing in Frisco and Austin, TX

Test Methodology

- Goal: Test real world accuracy of Current E911 deployed Technologies
- Parameters:
 - Off-the-shelf phones
 - Three air interfaces Three location technologies
 - U-TDOA on GSM
 - A-GPS/AFLT on CDMA
 - A-GPS/RTT on UMTS
 - Conducted Fall 2010
- Real world testing conducted in two PSAP areas of Texas
 - Frisco: Suburban
 - Austin: Urban, campus (U of Texas)

Test Methodology

- Over 3500 real 911 calls made to local PSAPs
 - At least ten calls from each test point
 - At least three iterations of calls at each test point
 - Concrete, steel, glass buildings for indoor testing
 - Suburban area of Frisco and Downtown Austin-University of Texas Campus
- Test point selection
 - Both indoor and outdoor test points
 - Chosen test points around city provide reasonable representation of subscriber use
 - Ground truth determined prior to test execution.
- Daily export of PSAP database allowed post-processing to determine error of each test call at each point

Indoor Results - Current E911 Technologies

Texas PSAPs - Indoor Calls [Blue-UTDOA; Red-AGPS/AFLT(CDMA); Green-AGPS(UMTS)]

- Location technologies deployed today can reliably and accurately locate E911 calls from indoor locations
- Wireless operators are increasingly relying on GPS based solutions, such as AGPS + AFLT and AGPS + RTT, which do not work indoors
- The FCC now has enough information about indoor location technologies to move forward to solve the increasing problem of inadequate indoor location coverage

CERTIFICATE OF SERVICE

I hereby certify that on this 6th day of August, 2013, a true and correct copy of the foregoing

document was served by electronic service on the following:

Chairwoman Mignon Clyburn Federal Communications Commission Attn: Louis Peraertz, Legal Advisor Louis.Peraertz@fcc.gov

Commissioner Jessica Rosenworcel Federal Communications Commission Attn: David Goldman, Senior Legal Advisor David.Goldman@fcc.gov

Commissioner Ajit Pai Federal Communications Commission Attn: Courtney Reinhard, Legal Advisor Courtney.Reinhard@fcc.gov

David Turetsky
Chief
Public Safety and Homeland Security Bureau
Federal Communications Commission
David.Turetsky@fcc.gov

David Furth
Deputy Chief
Public Safety and Homeland Security Bureau
Federal Communications Commission
David.Furth@fcc.gov

Timothy May
Communications Manager and Project Specialist for NextGeneration 9-1-1
Public Safety and Homeland Security Bureau
Federal Communications Commission
Timothy.May@fcc.gov

David Siehl
Legal Counsel
Public Safety and Homeland Security Bureau
Federal Communications Commission
David.Siehl@fcc.gov

Dana Zelman
Legal Counsel
Public Safety and Homeland Security Bureau
Federal Communications Commission
Dana.Zelman@fcc.gov

Erika Olsen Special Counsel Public Safety and Homeland Security Bureau Federal Communications Commission Erika.Olsen@fcc.gov

Thomas Beers
Chief
Policy and Licensing Division
Public Safety and Homeland Security Bureau
Federal Communications Commission
Tom.Beers@fcc.gov

Ruth Milkman
Chief
Wireless Telecommunications Bureau
Federal Communications Commission
Ruth.Milkman@fcc.gov

James Schlichting
Senior Deputy Bureau Chief
Wireless Telecommunications Bureau
Federal Communications Commission
James.Schlichting@fcc.gov

Jane Jackson
Associate Bureau Chief
Wireless Telecommunications Bureau
Federal Communications Commission
Jane.Jackson@fcc.gov

Charles Mathias
Associate Bureau Chief
Wireless Telecommunications Bureau
Federal Communications Commission
Charles.Mathias@fcc.gov

John Leibovitz Deputy Bureau Chief Wireless Telecommunications Bureau Federal Communications Commission John.Leibovitz@fcc.gov

Paul Murray Assistant Bureau Chief Wireless Telecommunications Bureau Federal Communications Commission Paul.Murray@fcc.gov

Tom Peters
Chief Engineer
Wireless Telecommunications Bureau
Federal Communications Commission
Tom.Peters@fcc.gov

Julius Knapp
Chief Engineer
Office of Engineering and Technology
Federal Communications Commission
Julius.Knapp@fcc.gov

Ron Repasi
Deputy Chief Engineer
Office of Engineering and Technology
Federal Communications Commission
Ronald.Repasi@fcc.gov

Matthew Hussey Associate Chief for Policy Office of Engineering and Technology Federal Communications Commission Matthew.Hussey@fcc.gov

Mark Settle Chief Policy and Rules Division Office of Engineering and Technology Federal Communications Commission Mark.Settle@fcc.gov

Lula Robinson